3.6.84 \(\int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)+C \sec ^2(c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx\) [584]

3.6.84.1 Optimal result
3.6.84.2 Mathematica [A] (verified)
3.6.84.3 Rubi [A] (verified)
3.6.84.4 Maple [A] (verified)
3.6.84.5 Fricas [A] (verification not implemented)
3.6.84.6 Sympy [F(-1)]
3.6.84.7 Maxima [B] (verification not implemented)
3.6.84.8 Giac [F]
3.6.84.9 Mupad [B] (verification not implemented)

3.6.84.1 Optimal result

Integrand size = 45, antiderivative size = 178 \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 a (A+7 B) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {2 a (24 A+28 B+35 C) \sin (c+d x)}{105 d \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {4 a (24 A+28 B+35 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{105 d \sqrt {a+a \sec (c+d x)}}+\frac {2 A \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)} \]

output
2/35*a*(A+7*B)*sin(d*x+c)/d/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2)+2/105* 
a*(24*A+28*B+35*C)*sin(d*x+c)/d/sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2)+4/ 
105*a*(24*A+28*B+35*C)*sin(d*x+c)*sec(d*x+c)^(1/2)/d/(a+a*sec(d*x+c))^(1/2 
)+2/7*A*sin(d*x+c)*(a+a*sec(d*x+c))^(1/2)/d/sec(d*x+c)^(5/2)
 
3.6.84.2 Mathematica [A] (verified)

Time = 1.07 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.53 \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 a \left (15 A+3 (6 A+7 B) \sec (c+d x)+(24 A+28 B+35 C) \sec ^2(c+d x)+(48 A+56 B+70 C) \sec ^3(c+d x)\right ) \sin (c+d x)}{105 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a (1+\sec (c+d x))}} \]

input
Integrate[(Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2 
))/Sec[c + d*x]^(7/2),x]
 
output
(2*a*(15*A + 3*(6*A + 7*B)*Sec[c + d*x] + (24*A + 28*B + 35*C)*Sec[c + d*x 
]^2 + (48*A + 56*B + 70*C)*Sec[c + d*x]^3)*Sin[c + d*x])/(105*d*Sec[c + d* 
x]^(5/2)*Sqrt[a*(1 + Sec[c + d*x])])
 
3.6.84.3 Rubi [A] (verified)

Time = 0.92 (sec) , antiderivative size = 184, normalized size of antiderivative = 1.03, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3042, 4574, 27, 3042, 4503, 3042, 4292, 3042, 4291}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a \sec (c+d x)+a} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {7}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx\)

\(\Big \downarrow \) 4574

\(\displaystyle \frac {2 \int \frac {\sqrt {\sec (c+d x) a+a} (a (A+7 B)+a (4 A+7 C) \sec (c+d x))}{2 \sec ^{\frac {5}{2}}(c+d x)}dx}{7 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\sqrt {\sec (c+d x) a+a} (a (A+7 B)+a (4 A+7 C) \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)}dx}{7 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (a (A+7 B)+a (4 A+7 C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx}{7 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 4503

\(\displaystyle \frac {\frac {1}{5} a (24 A+28 B+35 C) \int \frac {\sqrt {\sec (c+d x) a+a}}{\sec ^{\frac {3}{2}}(c+d x)}dx+\frac {2 a^2 (A+7 B) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}}{7 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{5} a (24 A+28 B+35 C) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 a^2 (A+7 B) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}}{7 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 4292

\(\displaystyle \frac {\frac {1}{5} a (24 A+28 B+35 C) \left (\frac {2}{3} \int \frac {\sqrt {\sec (c+d x) a+a}}{\sqrt {\sec (c+d x)}}dx+\frac {2 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a^2 (A+7 B) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}}{7 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{5} a (24 A+28 B+35 C) \left (\frac {2}{3} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a^2 (A+7 B) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}}{7 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 4291

\(\displaystyle \frac {\frac {2 a^2 (A+7 B) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}+\frac {1}{5} a (24 A+28 B+35 C) \left (\frac {4 a \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d \sqrt {a \sec (c+d x)+a}}+\frac {2 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\right )}{7 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

input
Int[(Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sec 
[c + d*x]^(7/2),x]
 
output
(2*A*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2)) + ((2 
*a^2*(A + 7*B)*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d* 
x]]) + (a*(24*A + 28*B + 35*C)*((2*a*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]] 
*Sqrt[a + a*Sec[c + d*x]]) + (4*a*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*d*Sq 
rt[a + a*Sec[c + d*x]])))/5)/(7*a)
 

3.6.84.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4291
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)] 
*(d_.)], x_Symbol] :> Simp[-2*a*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*S 
qrt[d*Csc[e + f*x]])), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4292
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)], x_Symbol] :> Simp[a*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*n*Sqrt[a 
+ b*Csc[e + f*x]])), x] + Simp[a*((2*n + 1)/(2*b*d*n))   Int[Sqrt[a + b*Csc 
[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && 
 EqQ[a^2 - b^2, 0] && LtQ[n, -2^(-1)] && IntegerQ[2*n]
 

rule 4503
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Co 
t[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] + Simp 
[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n)   Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[ 
e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a 
*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] && LtQ[n, 0]
 

rule 4574
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a 
_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e 
 + f*x])^n/(f*n)), x] - Simp[1/(b*d*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[ 
e + f*x])^(n + 1)*Simp[a*A*m - b*B*n - b*(A*(m + n + 1) + C*n)*Csc[e + f*x] 
, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m}, x] && EqQ[a^2 - b^2, 0] 
&&  !LtQ[m, -2^(-1)] && (LtQ[n, -2^(-1)] || EqQ[m + n + 1, 0])
 
3.6.84.4 Maple [A] (verified)

Time = 1.31 (sec) , antiderivative size = 112, normalized size of antiderivative = 0.63

method result size
default \(\frac {2 \left (15 A \cos \left (d x +c \right )^{3}+18 A \cos \left (d x +c \right )^{2}+21 B \cos \left (d x +c \right )^{2}+24 A \cos \left (d x +c \right )+28 B \cos \left (d x +c \right )+35 C \cos \left (d x +c \right )+48 A +56 B +70 C \right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \tan \left (d x +c \right )}{105 d \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}\) \(112\)
parts \(\frac {2 A \left (5 \cos \left (d x +c \right )^{3}+6 \cos \left (d x +c \right )^{2}+8 \cos \left (d x +c \right )+16\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \tan \left (d x +c \right )}{35 d \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}+\frac {2 B \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (3 \sin \left (d x +c \right )+4 \tan \left (d x +c \right )+8 \sec \left (d x +c \right ) \tan \left (d x +c \right )\right )}{15 d \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {5}{2}}}+\frac {2 C \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (\sin \left (d x +c \right )+2 \tan \left (d x +c \right )\right )}{3 d \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}\) \(192\)

input
int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(7/2 
),x,method=_RETURNVERBOSE)
 
output
2/105/d*(15*A*cos(d*x+c)^3+18*A*cos(d*x+c)^2+21*B*cos(d*x+c)^2+24*A*cos(d* 
x+c)+28*B*cos(d*x+c)+35*C*cos(d*x+c)+48*A+56*B+70*C)*(a*(1+sec(d*x+c)))^(1 
/2)/(cos(d*x+c)+1)/sec(d*x+c)^(3/2)*tan(d*x+c)
 
3.6.84.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 115, normalized size of antiderivative = 0.65 \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 \, {\left (15 \, A \cos \left (d x + c\right )^{4} + 3 \, {\left (6 \, A + 7 \, B\right )} \cos \left (d x + c\right )^{3} + {\left (24 \, A + 28 \, B + 35 \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (24 \, A + 28 \, B + 35 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{105 \, {\left (d \cos \left (d x + c\right ) + d\right )} \sqrt {\cos \left (d x + c\right )}} \]

input
integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c 
)^(7/2),x, algorithm="fricas")
 
output
2/105*(15*A*cos(d*x + c)^4 + 3*(6*A + 7*B)*cos(d*x + c)^3 + (24*A + 28*B + 
 35*C)*cos(d*x + c)^2 + 2*(24*A + 28*B + 35*C)*cos(d*x + c))*sqrt((a*cos(d 
*x + c) + a)/cos(d*x + c))*sin(d*x + c)/((d*cos(d*x + c) + d)*sqrt(cos(d*x 
 + c)))
 
3.6.84.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \]

input
integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)*(a+a*sec(d*x+c))**(1/2)/sec(d*x 
+c)**(7/2),x)
 
output
Timed out
 
3.6.84.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 609 vs. \(2 (154) = 308\).

Time = 0.52 (sec) , antiderivative size = 609, normalized size of antiderivative = 3.42 \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\text {Too large to display} \]

input
integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c 
)^(7/2),x, algorithm="maxima")
 
output
1/840*(3*sqrt(2)*(105*cos(6/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 
7/2*c)))*sin(7/2*d*x + 7/2*c) + 35*cos(4/7*arctan2(sin(7/2*d*x + 7/2*c), c 
os(7/2*d*x + 7/2*c)))*sin(7/2*d*x + 7/2*c) + 7*cos(2/7*arctan2(sin(7/2*d*x 
 + 7/2*c), cos(7/2*d*x + 7/2*c)))*sin(7/2*d*x + 7/2*c) - 105*cos(7/2*d*x + 
 7/2*c)*sin(6/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))) - 35* 
cos(7/2*d*x + 7/2*c)*sin(4/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7 
/2*c))) - 7*cos(7/2*d*x + 7/2*c)*sin(2/7*arctan2(sin(7/2*d*x + 7/2*c), cos 
(7/2*d*x + 7/2*c))) + 10*sin(7/2*d*x + 7/2*c) + 7*sin(5/7*arctan2(sin(7/2* 
d*x + 7/2*c), cos(7/2*d*x + 7/2*c))) + 35*sin(3/7*arctan2(sin(7/2*d*x + 7/ 
2*c), cos(7/2*d*x + 7/2*c))) + 105*sin(1/7*arctan2(sin(7/2*d*x + 7/2*c), c 
os(7/2*d*x + 7/2*c))))*A*sqrt(a) + 14*sqrt(2)*(30*cos(4/5*arctan2(sin(5/2* 
d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))*sin(5/2*d*x + 5/2*c) + 5*cos(2/5*arct 
an2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))*sin(5/2*d*x + 5/2*c) - 30 
*cos(5/2*d*x + 5/2*c)*sin(4/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 
5/2*c))) - 5*cos(5/2*d*x + 5/2*c)*sin(2/5*arctan2(sin(5/2*d*x + 5/2*c), co 
s(5/2*d*x + 5/2*c))) + 6*sin(5/2*d*x + 5/2*c) + 5*sin(3/5*arctan2(sin(5/2* 
d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) + 30*sin(1/5*arctan2(sin(5/2*d*x + 5/ 
2*c), cos(5/2*d*x + 5/2*c))))*B*sqrt(a) + 140*sqrt(2)*(3*cos(2/3*arctan2(s 
in(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))*sin(3/2*d*x + 3/2*c) - 3*cos(3 
/2*d*x + 3/2*c)*sin(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2...
 
3.6.84.8 Giac [F]

\[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {a \sec \left (d x + c\right ) + a}}{\sec \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

input
integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c 
)^(7/2),x, algorithm="giac")
 
output
sage0*x
 
3.6.84.9 Mupad [B] (verification not implemented)

Time = 18.80 (sec) , antiderivative size = 151, normalized size of antiderivative = 0.85 \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {\cos \left (c+d\,x\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\sqrt {\frac {a\,\left (\cos \left (c+d\,x\right )+1\right )}{\cos \left (c+d\,x\right )}}\,\left (420\,A\,\sin \left (c+d\,x\right )+490\,B\,\sin \left (c+d\,x\right )+560\,C\,\sin \left (c+d\,x\right )+126\,A\,\sin \left (2\,c+2\,d\,x\right )+36\,A\,\sin \left (3\,c+3\,d\,x\right )+15\,A\,\sin \left (4\,c+4\,d\,x\right )+112\,B\,\sin \left (2\,c+2\,d\,x\right )+42\,B\,\sin \left (3\,c+3\,d\,x\right )+140\,C\,\sin \left (2\,c+2\,d\,x\right )\right )}{420\,d\,\left (\cos \left (c+d\,x\right )+1\right )} \]

input
int(((a + a/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/( 
1/cos(c + d*x))^(7/2),x)
 
output
(cos(c + d*x)*(1/cos(c + d*x))^(1/2)*((a*(cos(c + d*x) + 1))/cos(c + d*x)) 
^(1/2)*(420*A*sin(c + d*x) + 490*B*sin(c + d*x) + 560*C*sin(c + d*x) + 126 
*A*sin(2*c + 2*d*x) + 36*A*sin(3*c + 3*d*x) + 15*A*sin(4*c + 4*d*x) + 112* 
B*sin(2*c + 2*d*x) + 42*B*sin(3*c + 3*d*x) + 140*C*sin(2*c + 2*d*x)))/(420 
*d*(cos(c + d*x) + 1))